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1 Problem 
Security event data, such as intrusion detection system alerts, provide a starting 

point for analysis, but are information impoverished. To provide context, analysts must 
manually gather and synthesize relevant data from myriad sources within their enterprise 
and external to it. Analysts search system logs, network flows, and firewall data; they 
search IP blacklists and reputation lists, software vulnerability information, malware and 
threat data, OS and application vendor blogs, and news sites. All of these sources are 
manually searched for data relevant to the event being investigated. Relevant results must 
then be brought together and synthesized to put the event in context and make decisions 
about its importance and impact. 

2 Summary 
 Gathering and fusing relevant context is a manual, tedious process, but the results 
of this process are required to know how to react to events. Stucco is a cyber intelligence 
platform to help automate this process and provide relevant information to analysts 
quickly and easily. Stucco collects data not typically integrated into security systems, 
extracts domain concepts and relationships, and integrates that information into a cyber 
security knowledge graph to accelerate decision making.  
 By organizing data into a knowledge graph, security analysts will be able to 
rapidly search for domain concepts, speeding up access to the information needed for 
decision-making. The information returned will only be that which is pertinent to their 
search. Our approach enables analysts to more quickly identify events that can be 
discarded as false positives and to perform more thorough analysis with the relevant 
context to make decisions.  
 Stucco is open-source software available at https://stucco.github.io/ 
 
 
 
 
 
 



3 System Overview 
 

3.1 Data Collection 
 The collectors pull data or process data streams and push the collected data 
(documents) into the message queue. Each type of collector is independent of others. The 
collectors can be implemented in any language. Collectors can either send messages with 
the document content or without. For messages without content, the collector will add the 
document to the document store and attach the returned 'id' to the message. Collectors can 
either be stand-alone and run on any host, or be host-based and designed to collect data 
specific to that host. Stand-alone collectors may require state (state should be stored with 
the scheduler, such as the last time a site was downloaded). Host-based collectors may 
need to store state (e.g. when the last collection was run). 

3.1.1 Collector Types 
Web collector 
Web collectors pull a document via HTTP/HTTPS given a URL. Documents will be 
decompressed, but no other processing will occur. The documents can be various formats 
such as HTML, XML, CSV, etc. 
 
Scraping collector 
Scrapers pull data embedded within a web page via HTTP/HTTPS given a URL and an 
HTML pattern. The documents will be in HTML format. 
 
RSS collector 
RSS collectors pull an RSS/ATOM feed via HTTP/HTTPS given a URL. The documents 
will be in XML format. 
 
 
 
 



Twitter collector 
Twitter collectors pull Tweet data via HTTP from the Twitter Search REST API given a 
user (@username), hashtag (#keyword), or search term. The documents will be in JSON 
format. 
 
Netflow collector 
Netflow collectors will collect from Argus (http://www.qosient.com/argus/). The 
collector will listen for Argus streams using 'ra' tool and convert to XML and send the 
flow data to the message queue as a string. 
 
Host-based collectors 
Host-based collectors collect data from an individual host using agents. Host-based 
collectors should be able to collect and forward: 
• System logs 
• Hone (https://github.com/HoneProject/) data 
• Installed packages 

The documents will be in whatever format the agent uses. 

3.1.2 Post-Processing 
 After collection has taken place the content may require additional handling.  For 
example, the NVD source is tarred and gzipped. We specifically provide a post-
processing method that will untar and unzip the file before it is sent on through the 
pipeline. We've added following post-processing actions on the content: 
• unzip: uncompress the content by first determining the compression type based on 

the file extension .gz, bz2, etc. 
• tar-unzip: untar the file content prior to uncompressing the content. 
• removeHTML: applies the Boilerpipe (https://github.com/kohlschutter/boilerpipe) 

process to the content to extract the base text content by ignoring the HTML tags in 
a webpage. It also uses the Apache TIKA library (https://tika.apache.org/) to extract 
the documents’ metadata. Recommended for use on all unstructured text sources. 

3.1.3 Input Transport Protocol 
Input transport protocol will depend on the type of collector. 

3.1.4 Input Format 
Input format will depend on the type of collector. 

3.1.5 Output Transport Protocol 
Advanced Message Queuing Protocol (AMQP) (http://www.amqp.org/), as 

implemented in RabbitMQ. See the concepts documentation 
(http://www.rabbitmq.com/tutorials/amqp-concepts.html) for information about AMQP 
and RabbitMQ concepts. See the protocol documentation 
(http://www.rabbitmq.com/amqp-0-9-1-reference.html) for more on AMQP. Examples 
below are in Go (http://golang.org/) using the AMPQ package 
(http://godoc.org/github.com/streadway/amqp). Other libraries 
(http://www.rabbitmq.com/devtools.html) should implement similar interfaces. 



 The RabbitMQ exchange uses the exchange-type of 'topic' with the exchange-
name of 'stucco'. The exchange declaration options should be: 
    "topic",    // type 
    true,       // durable 
    false,      // auto-deleted 
    false,      // internal 
    false,      // noWait 
    nil        // arguments 
 
The publish options should be: 
    stucco,     // publish to an exchange named stucco 
    <routingKey>, // routing to 0 or more queues 
    false,      // mandatory 
    false      // immediate 
 
The '<routingKey>' format should be: 'stucco.in.<data-type>.<source-name>.<data-name 
(optional)>', where: 
data-type (required): the type of data, either 'structured' or 'unstructured' 
source-name (required): the source of the collected data, such as cve, nvd, maxmind, cpe, 
argus, hone. 
data-name (optional): the name of the data, such as the hostname of the sensor. 
 
The message options should be: 
        DeliveryMode:     1,    // 1=non-persistent, 2=persistent 
        Timestamp:         time.Now(), 
        ContentType:       "text/plain", 
        ContentEncoding:  "", 
        Priority:          1,    // 0-9 
        HasContent:        true, // boolean 
        Body:              <payload> 
 
'DeliveryMode' should be 'persistent'. 
 
'Timestamp' should be automatically filled out by your AMPQ client library. If not, the 
publisher should specify. 
 
'ContentType' should be "text/xml" or "text/csv" or "application/json" or "text/plain" 
(i.e. collectorType from the output format). This is dependent on the data source. 
 
'ContentEncoding' may be required if things are, for example, gzipped. 
 
'Priority' is optional. 
 
'HasContent' is an application-specific part of the message header that defines whether 
or not there is content as part of the message. It should be defined in the message header 
field table using a boolean: “HasContent: true” (if there is data content) or “HasContent: 



false” (if the document service has the content). The next extraction component will use 
the document service accordingly. This is the only application-specific data needed. 
 
'Body' is the payload, either the document itself or the ID if 'HasContent' is false. 
 
The corresponding binding keys for the queue (http://www.rabbitmq.com/amqp-0-9-1-
quickref.html#class.queue) defined in the extraction pipeline (RT) can use wildcards to 
determine which extraction component should handle which messages: 
* (star) can substitute for exactly one word. 
# (hash) can substitute for zero or more words. 
For example, 'stucco.in.#' would listen for all input. 

3.1.6 Output Format 
There are two types of output messages: (1) messages with data and (2) messages 

without data that reference an ID in the document store. 

3.2 Scheduler 
 The scheduler is a Java application that uses the Quartz Scheduler library 
(http://www.quartz-scheduler.org) for running tasks. The scheduler instantiates and runs 
collectors at the scheduled times. The schedule is specified in a configuration file. 
 The collectors and scheduler are tightly coupled, so it makes sense to discuss 
major aspects of collection control together. Accordingly, we discuss configuration 
options and redundancy control here, even though most of their actual implementation is 
part of the collectors.  

3.2.1 Configuration 
 The schedule is maintained in the main Stucco configuration file, stucco.yml. The 
scheduler can read directly from file.  

3.2.2 Running 
 The scheduler's main class is gov.pnnl.stucco.utilities.CollectorScheduler. It 
recognizes the following switches: 
-section 

This tells the scheduler what section of the configuration to use. It is currently a 
required switch and should be specified as "–section demo-load". 

-file  
This tells the scheduler to read the collector configuration from the given YAML 
file, typically stucco.yml. 

-url  
This tells the scheduler to read the collector configuration from a URL like for an 
etcd service, which will typically be http://10.10.10.100:4001/v2/keys/ (the actual 
IP may vary depending on your setup). Alternatively, inside the VM, you can use 
localhost instead of the IP 

3.2.3 Schedule Format 
Each exogenous collector’s configuration contains information about how and 

when to collect a source. Example from a configuration file: 
 



   default: 
    … 
      scheduler: 
        collectors: 
          - 
            source-name: Bugtraq 
            type: PSEUDO_RSS 
            data-type: unstructured 
            source-URI: http://www.securityfocus.com/vulnerabilities 
            content-type: text/html 
            crawl-delay: 2 
            entry-regex: 'href="(/bid/\d+)"' 
            tab-regex: 'href="(/bid/\d+/(info|discuss|exploit|solution|references))"' 
            next-page-regex: 'href="(/cgi-bin/index\.cgi\?o[^"]+)">Next &gt;<' 
            cron: 0 0 23 * * ? 
            now-collect: all 
 
source-name 
The name of the source, used primarily as a key for the document-processing pipeline 
(i.e. the extraction components). 
 
type 
The type key specifies the primary kind of collection for a source. Here's one way to 
categorize the types. 
 
Generic Collectors - Collectors used to handle the most common cases. 
• RSS: An RSS feed 
• PSEUDO_RSS: A web page acting like an RSS feed, potentially with multiple 

pages, multiple entries per page, and multiple subpages (tabs) per entry. This uses 
regular expressions to scrape the URLs it needs to traverse. 
• TABBED_ENTRY: A web page with multiple subpages (tabs). In typical use, this 

will be a delegate for one of the above collectors, and won't be scheduled directly. 
• WEB: A single web page. In typical use, this will be a delegate for one of the above 

collectors, and won't be scheduled directly. 
 
Site-Specific Collectors - Collectors custom-developed for a specific source. 
• NVD: The National Vulnerability Database 
• BUGTRAQ: The Bugtraq pseudo-RSS feed. (Deprecated) Use PSEUDO_RSS. 
• SOPHOS: The Sophos RSS feed. (Deprecated) Use RSS with a tab-regex. 

 
Disk-Based Collectors - Collectors used for test/debug, to "play back" previously-
captured data. 
• FILE: A file on disk 
• FILEBYLINE: A file, treated as one document per line 
• DIRECTORY: A directory on disk with multiple documents 



source-uri 
The URI for a source. 
 
crawl-delay 
The minimum number of seconds to wait between requests to a site. 
 
*-regex 
The collectors use regular expressions (specifically Java regexes) to scrape additional 
links to traverse. There are currently keys for three kinds of links: 
• entry-regex: In a PSEUDO_RSS feed, this regex is used to identify the individual 

entries. 
• tab-regex: In an RSS or PSEUDO_RSS feed, this regex is used to identify the 

subpages (tabs) of a page. 
• next-page-regex: In a PSEUDO_RSS feed, this regex is used to identify the next 

page of entries. 
 
cron 
When to collect is specified in the form of a Quartz Scheduler cron expression. 
CAUTION: Quartz's first field is seconds, not minutes like some crons. 
There are seven whitespace-delimited fields (six required, one optional): 
 
’s m h D M d [Y]’ 
These are seconds, minutes, hours, day of month, month, day of week, and year. 
• Use * to mean “every” 
• Exactly one of the D/d fields must be specified as ? to indicate it isn’t used 
• In addition, we support specifying a cron expression of now, to mean “immediately 

run once”. 
 
now-collect 
The now-collect configuration key is intended as an improvement on the now cron 
option, offering more nuanced control over scheduler start-up behavior. This key can take 
the following values: 
• ‘all’: Collect as much as possible, skipping URLs already collected 
• ‘new’: Collect as much as possible, but stop once we find a URL that's already 

collected 
• ‘none’: Collect nothing; just let the regular schedule do it 

3.2.4 Reducing Redundant Collection 
 Most of the scheduler consists of fairly straightforward use of Quartz. The one 
area that is slightly more complicated is the logic used to try to prevent, or at least reduce, 
redundant collection and messaging. We’re trying to avoid collecting pages that haven’t 
changed since the last collection. Sometimes we may not have sufficient information to 
avoid such redundant collection, but we can still try to detect the redundancy and avoid 
re-messaging the content to the rest of Stucco. Our strategy is to use built-in HTTP 
features to prevent redundant collection where possible, and to use internal bookkeeping 



to detect redundant collection when it does happen. We implement this strategy using the 
following tactics: 

1. We use HTTP HEAD requests to see if GET requests are necessary. In some 
cases the HEAD request will be enough to tell that there is nothing new to collect.  

2. We make both HTTP HEAD and GET requests conditional, using HTTP’s If-
Modified-Since and If-None-Match request headers. If-Modified-Since checks 
against a timestamp.  If-None-Match checks against a previously returned 
response header called an ETag (entity tag). An ETag is essentially an ID of some 
sort, often a checksum. 

3. We record a SHA-1 checksum on collected content, so we check it for a match the 
next time. This is necessary because not all sites run the conditional checks. For a 
feed, the checksum is performed on the set of feed URLs. 

 
 These checks are performed by the collectors and the internal bookkeeping is kept 
in the CollectorMetadata.db file. Each entry is a whitespace-delimited line containing 
URL, last collection time, SHA-1 checksum, and UUID. 

3.2.5 State 
 The scheduler runs the schedule as expected, controlling when the collectors 
execute. Other aspects of collection control are less complete, and need improvements in 
the following areas: 

1. Exception Handling - Minor exceptions during collection are generally ignored. 
However, no attempt is made to deal with more serious exceptions. In particular, 
no attempt is made to ensure that the metadata recording, document storage, and 
message sending are performed in a transactional manner. The scheduler does 
have a shutdown hook so it can attempt to exit gracefully for planned shutdowns. 

2. Collector Metadata Storage - This is currently implemented strictly as proof-of-
principle. Metadata is stored to a flat file, requiring constant re-loading and re-
writing of the entire file. We know this won't scale, and plan to migrate to an 
embedded database.  

3. Leveraging robots.txt - The code does not currently read a site's robots.txt file. It 
should do so in order to determine the throttling setting, as well as know if it 
should avoid collection of some files. Currently, we can honor these in the 
configuration file by using the crawl-delay setting and by only specifying URLs 
that are fair game. 

3.3 Document Service 
 This software provides a storage service for text documents and metadata over an 
HTTP API. The API is exposed on ‘host:port/document/‘ with the following routes: 
• Get a document:  

GET host:port/document/<id> 
Returns a JSON object of the document and meta-data, which includes the success 
or failure. 
• Post a document:  

POST host:port/document/  will assign an id 
POST host:port/document/<id>  to specify the id 

Returns a JSON object that describes the success or failure. 



• Delete a document:  
DELETE host:port/document/<id> 

Returns a JSON object that describes the success or failure. 
 
Examples: 
Below are examples using ‘curl’ (http://curl.haxx.se). 
 
1) Upload a json file: 
 

curl -XPOST localhost:8000/document/12345\?extractor\=test\&title\=test 

--data "{key1: 'some data', key2: 'more data'}" -i -H "Content-Type: 

application/json" 

 

HTTP/1.1 200 OK 

Content-Type: application/json 

Date: Fri, 21 Nov 2014 01:53:18 GMT 

Content-Length: 61 

 

{"ok":"true","key":"12345","message":"saved document by id"} 
 
2) Retrieve a file: 
 

curl -XGET localhost:8000/document/12345 –i 

 

HTTP/1.1 200 OK 

Content-Type: application/json 

Date: Fri, 21 Nov 2014 01:54:41 GMT 

Content-Length: 122 

 

{"ok":"true","key":"12345","document":"{key1: 'some data', key2: 'more 

data'}","timestamp":1416534798,"extractor":"test"} 
 
 
3) Delete a file: 
 

curl -XDELETE localhost:8000/document/12345 -i 

 

HTTP/1.1 200 OK 

Content-Type: application/json 

Date: Fri, 21 Nov 2014 01:55:38 GMT 

Content-Length: 57 

 

{"ok":"true","key":"12345","message":"removed document"} 
 
4) Upload an image file: 
 

base64 file.png | curl -XPOST localhost:8000/document/ --data @- -i -H 

"Content-Type: image/png" 

 



HTTP/1.1 100 Continue 

 

HTTP/1.1 200 OK 

Content-Type: application/json 

Date: Thu, 15 Jan 2015 20:36:16 GMT 

Content-Length: 86 

 

{"ok":"true","key":"befc3e40-e3de-4666-b7b5-

155e1b0935d6","message":"saved document"} 
 
5) Download an image file; this example uses ‘jq’ (http://stedolan.github.io/jq/) to extract 
the base64 data from the JSON object: 
 

curl -XGET localhost:8000/document/1de60b72-e91b-4a26-9466-86f0d3ccdf7f 

--silent | jq --raw-output .document | base64 -D > file.png 

 

3.4 Data Model 
 The Stucco data model aligns with the Structured Threat Information eXpression 
(STIX) language version 1.2.0. The documentation describes STIX as “a structured 
language for describing cyber threat information so it can be shared, stored, and analyzed 
in a consistent manner”. See the STIX version 1.x webpage for more details. 
(https://stixproject.github.io) Below is the graph representation of STIX data. 



3.5 RT 
RT is the real-time processing pipeline of Stucco. The data it receives will be transformed 
into a subgraph, consistent with the STIX data model (previously described). Then, the 
subgraph will be aligned with the knowledge graph. The RT pipeline consists of two 
message queue consumers (structured and unstructured), an unstructured information 
extraction process, a structured information extraction process, an alignment component, 
and a connection to the graph storage system. The following subsections describe the RT 
pipeline components. 

3.5.1 Message Queue 
 The message queue accepts input documents, from the collectors (publishers) and 
holds the documents in separate queues based on the routing key. RT consumes a 
message from the structured queue for structured information extraction, and consumes 
from the unstructured queue for unstructured extraction. The message queue uses the 
technology, RabbitMQ (http://www.rabbitmq.com/), which implements the Advanced 
Message Queueing Protocol (AMQP) standard version 0.9.1. The queue should hold 
messages until RT acknowledges its receipt.  

3.5.2 Entity Extraction 
Once the message is pulled from the unstructured queue, RT gets the document 

ID from within the message, and queries the document service for the document text and 
title. The text and title are passed to the entity extraction component. The entity 
extraction component identifies and labels cyber-domain entities from unstructured text. 
The document’s text is either contained in the message itself, or the entity extraction 
component requests it from the document service. This library makes use of Stanford's 
CoreNLP (http://nlp.stanford.edu/software/corenlp.shtml) and Apache's OpenNLP 
(https://opennlp.apache.org) libraries. 
 
3.5.2.1 Entity Types 
• Software 

o Vendor 
o Product 
o Version 

• File 
o Name 

• Function 
o Name 

• Vulnerability 
o Name 
o Description 
o CVE ID 
o MS ID 

 
3.5.2.2 Input 
• Trained Apache OpenNLP averaged perceptron model file in binary format that 

represents a cyber-domain entity model 



• Default CoreNLP models for tokenizing, part-of-speech tagging, sentence splitting, 
and parse-tree building 
• Text content of document to be annotated with cyber labels 
• Predefined heuristics, including known-entity lists (i.e. gazetteers) and regular 

expressions 
• Mapping of known tokens (i.e. words or punctuation) to a unique label, found during 

training 
 
3.5.2.3 Process 

1. Use the CoreNLP library to tokenize, part-of-speech tag, and build the parse trees of 
the document's text. 

2. Check the tokens (i.e. words and punctuation) against lists of known entities such as 
Google's Freebase data sets. If the token is found, label it appropriately. 

3. Attempt to match a token, or set of tokens against regular expressions. If a match is 
found, then label the token, or set of tokens. 

4. Check token against the token-to-unique-label map and label appropriately, if 
found. 

5. If the token is still unlabeled, generate features/context for the token, and evaluate 
them against the maximum entropy model (MEM) to determine the label with the 
highest probability. 

 
3.5.2.4 Features / Context Used 
• Token (word or punctuation to be labeled) 
• Prefix (first 6 characters of token) 
• Suffix (last 6 characters of token) 
• Part of speech tag 
• Match current token against a set of regular expressions 
• Match pervious token against a set of regular expressions 

 
3.5.2.5 Output 

An Annotation object that represents the document as a map, where annotator 
classnames are keys. The document map includes the following values: 
• Text: original raw text 
• Sentences: list of sentences 

o Sentence: map representing one sentence 
§ Token: word within the sentence 
§ POSTag: part-of-speech tag 
§ CyberEntity: cyber domain label for the token 

o ParseTree: sentence structure as a tree 
 

3.5.3 Relation Extraction 
 The relation extraction component creates vertices from a document annotated 
with cyber-entity labels, and creates edges using a set of SVMs and feature models to 
predict relationships between these cyber entities. 



  
3.5.3.1 Relationship Types 
* ExploitTargetRelatedObservable Edge 
 
 Exploit Target (e.g. vulnerability) --> Observable (e.g. software) 
  
* Sub-Observable Edge 
 
 Observable (e.g. software) --> Observable (e.g. file) 
  
* Software, File, Function, Vulnerability Vertex Properties 
 
 Software/file/function/vulnerability properties are part of the same vertex 
   

Example Text: "... MS15-035, which addresses a remote code execution bug ..." 
 

"MS15-035" is extracted as a vulnerability MS ID property, and "remote code 
execution" is extracted as a vulnerability description property. This type of 
relationship indicates that both properties are describing the same vulnerability 
object. 

 
3.5.3.2 Input 
• Output from the entity-extraction component as an Annotation object, which 

represents the sentences, list of words from the text, along with each word's part of 
speech tag and cyber-domain label. 
• The string name of the document's source 
• The string name of the document's title 

 
3.5.3.3 Process 

1. Pre-trained Word2Vec model 
2. Pre-trained SVM models, one for each relationship and entities' order of appearance 
3. Pre-generated feature maps, one for each relationship and entities' order of 

appearance 
4. NVD XML files are used to find examples of the relationships 
5. For each Annotated document: 

a. Use NVD files to find known examples of relationships in document 
b. Use Word2Vec model to encode each token of the document 
c. Use feature maps to generate feature vectors for each token of the document 
d. Use pre-trained SVM models with the document's feature vectors to predict 
relationships between cyber entities 

Please refer to relation-bootstrap repo (https://github.com/stucco/relation-bootstrap) for 
more information on the research related to this process. 
  
3.5.3.4 Output 

A JSON-formatted subgraph of the vertices and edges is created, which loosely 
resembles the STIX data model. 



  
 { 

  "vertices": { 

   "1235": { 

    "name": "1235", 

    "vertexType": "software", 

    "product": "Windows XP", 

    "vendor": "Microsoft", 

    "source": "CNN" 

   }, 

   ... 

   "1240": { 

    "name": "file.php", 

    "vertexType": "file", 

    "source": "CNN" 

   } 

  }, 

  "edges": [ 

   { 

    "inVertID": "1237", 

    "outVertID": "1238", 

    "relation": "ExploitTargetRelatedObservable" 

   }, 

   { 

    "inVertID": "1240", 

    "outVertID": "1239", 

    "relation": "Sub-Observable" 

   } 

  ] 

 } 

3.5.4 STIX Extraction 
There are two ways data can enter the STIX extraction process. The first is from 

RT pulling a new message from the structured queue. In this case, RT gets the document 
or ID from within the message, and queries the document service, if necessary. Then, the 
text is passed to the STIX extraction component for data ingestion. The second method of 
entry is from the relation extraction component. The JSON-formatted subgraph resulting 
from relation extraction needs to be transformed into the STIX data model before it can 
be aligned with the knowledge graph. 

The structured data ingested into the Stucco system can be of various formats. 
Information extraction requires transforming the raw data into a subgraph based on the 
STIX data model. The subgraph can then be aligned with the knowledge graph. The 
following data types are currently implemented: 
• Argus network flows 
• Bugtraq exploit targets and remediation 
• 1d4 malware 
• CAIDA autonomous systems mapping 
• CleanMX virus  
• Common Platform Enumeration (CPE) software  



• Common Vulnerabilities and Exposures (CVE) database  
• DNS records 
• F-Secure threat descriptions 
• Maxmind GeoIP 
• HTTP header requests 
• Hone process and port listing 
• Login events from auth.log 
• Malware domain list indicators 
• Metasploit exploit data 
• National Vulnerability Database (NVD) 
• Debian package list 
• Service list 
• Sophos virus alerts and indicators 
• Zeus Tracker malware 

3.5.5 Alignment 
 Alignment is the process of merging a new subgraph, generated by the extraction 
components, with the full knowledge graph. The alignment code receives all content from 
a single source as a single subgraph. For example, when Stucco loads content from a 
CVE source file, all the content is transformed into a JSON structure (similar to 
GraphSON), and passed to alignment. The alignment code “assumes" the string it 
receives is a JSON subgraph with a set of vertices and an array of edges. Alignment 
handles the merging of new content as individual vertices and edges without taking into 
account any topology/connectivity. There are two broad categories of alignment:  

1. Merging new nodes that have unique names / IDs (e.g. CVE #): 
• If a matching name / ID is not found in the knowledge graph, add the node. 
• If a matching name / ID is found in the knowledge graph, merge properties and 

merge edges. 
2. Merging nodes without names / IDs (e.g. malware). Some of these nodes may not 
have a name, others may have a name but it is not available: 
• Identify equivalent nodes and score the confidence that the two nodes refer to 

the same domain concept. 
• If a suitable match is found, merge properties and merge edges. 
• If a suitable match is not found, add the new node, and merge edges, if needed. 

 
 Of the two broad categories for alignment our first implementation is only of the 
first category. Here are the steps: 

1. Using only the vertices first: 
• Each vertex’s unique name / ID is searched for within the knowledge graph 

(i.e., unique name / alias in Postgres). 
• If no vertex is found, then this vertex is created within the knowledge graph. 
• If a vertex is found then the properties are “merged” with the vertex in the 

knowledge graph. Properties that were not present are added and existing 
properties are appended to, overridden, or retained if they are newer than the 



vertex being merged. There are two types of merge methods for Postgres: 
appendList and keepUpdates. 

 2. Once all the vertices have been added, then the edges can be added.   
• Note, vertices must be added first or the new edges won’t find the vertices 

within the knowledge graph. 
• Using the edge definition (i.e., which vertices ID’s define an edge) we look 

for incoming and outgoing vertices as defined in the knowledge graph. 
• If an edge’s definition can’t find all the vertices, an error is logged and the 

process moves to the next edge. 
• When the respective vertices are found the process then creates a property 

map for the edge and adds the edge properties to that map, finally committing 
that edge to the knowledge graph. If an edge already exists we are not 
performing alignment with it, which will create duplicate edges. 

To perform alignment with Postgres we load alignment rules written in PL/pgSQL into 
database during initialization, and all alignment process is occurring inside of a database. 

3.5.5.1 Alignment Research Avenues 
There are several venues to deal with the alignment problem in other domains. In 

the database domain, this is called the merge/purge problem of combining different 
databases. The theory is similar however the underlying structures are different because 
we are using a graph database whereas your standard relational database is row-column 
oriented. Part of this task will be exploring what functional pieces can be leverage from 
the database community and what pieces can be leveraged from the graph community. 
The following list attempts to highlight recommendations and considerations for future 
improvements to the alignment process. 

1. The alignment rule set will need to be based on the STIX data model. 
2. Rule construction may want to leverage a domain-specific language (DSL) to 

make construction and verification of the rules easier to manage. 
3. As rules are constructed are these rules maintained in a database or loaded via file 
4. Manual Correction Tool 

• Ability to revert/override modifications to the knowledge graph if there are 
incorrect insertions 
• Ability to add content without having to go through the pipeline 
• See the provenance on a node/edge and know what entries made that 

contribution 
5. Consider provide a holding queue for entries that have enough conflicting 

evidence that manual intervention is needed. 
6. Log provenance information for changes/updates on edges and nodes. 
7. When updates occur on either a node or edge the result is: 

• Overwrite content 
• Append content (simple merge) 
• Merge Content (identify what portions should be combined) 



8. Need to determine for different nodes/edges what comparison measure should be 
used. What kinds of comparison measures are needed? How much of deviation 
results in creation of a new node/edge, updating existing, or holding? 
• For canonical names or IDs the comparison function should be an equality 

measure 
• For dates, we need to consider timestamps that vary with only year down to 

the second (i.e. general to precise). How will we deal with this broad range 
(unless we provide range values)? 
• For unstructured text, there are several approaches but this will depend upon 

the property in question. 
9. Meta-Rules will need to be used to make sure that updates will be smart. For 

example, new sources of information may provide old content and shouldn't 
overwrite current content. Checking timestamps to know what content is most 
recent. 

10. Approximate subgraph matching with graph edit distance. This will help identify 
which subgraphs are most likely a match. However, it won't be conclusive as 
additional functions need to be applied at the individual levels to determine the 
update/insertion action. 
 

3.5.5.1.1 Merge Properties 
 When merging two nodes or edges where the new and existing values of a 
property differ, the updated value will be determined by some function that is specified 
for that property. The updated value may be (a) one of the two conflicting values, (b) a 
new value derived from both input values, or (c) an array-like object with both values. 
These functions may make use of any node properties, such as the new or existing node's 
confidence score, source(s), or published date(s). General process when merging nodes 
(properties that had “null” for either the existing or new value can be handled in the same 
way): 
 
A) resolve value: for each conflicting property, identify the updated value to insert into 
the knowledge graph. e.g.:   
 
existing_node["conflicting_property"] = 

resolve_property_with_strategy(conflicting_property, existing_node, new_node) 

 
B) update graph: update ‘existing_node.conflicting_property’ in the knowledge graph, 
and ‘new_node’ will not be added to graph. 
 
Edges to/from ‘new_node’ in the subgraph will be created in the knowledge graph to 
‘existing_node’. This assumes all nodes from the subgraph are added to the knowledge 
graph before edges. 
 
Example resolution functions: 
 
  //publishedDate is an integer unix timestamp 

  resolve_property_with_newest(property_name, existing_node, new_node)  

  { 



      if (existing_node["publishedDate"] < new_node["publishedDate"]) 

        return new_node["property_name"] 

      else 

        return existing_node["property_name"] 

   } 

 

   //confidence ("score") is a float between 0 and 1 

   resolve_property_by_confidence(property_name, existing_node, new_node)  

   { 

      if (existing_node["score"] < new_node["score"])  

        return new_node["property_name"] 

      else 

        return existing_node["property_name"] 

    } 
 
 Other examples could include a weighted average by confidence scores, or 
functions that may be unique to a specific property, e.g. an account's ‘lastLogin’ property 
might always take the newest value, or a vulnerability's ‘patchAvailable’ property might 
never change to ‘false’ once a ‘true’ value has been seen. Merging node confidence score 
properties will always use the same function across all node types. Other properties may 
share the same functions. 
 
3.5.5.1.2 Merge Edges 
 Nodes can be added or merged into the knowledge graph. The edges associated 
with those nodes need to be added or merged as well. If both nodes were merged or 
added to the knowledge graph, the strategy for merging is based on whether or not there 
is an existing edge. If no existing edge exists, add the edge. If an existing edge exists, 
merge the properties of both edges, as described above in the merge properties 
subsection. 
 
3.5.5.1.3 Identify Equivalent Nodes 
 This process starts with a new node, with no matching ID found in the database.  
The database is searched for existing nodes which may be equivalent, and if a match is 
found, the node properties and edges are merged as above. If an equivalent node is not 
found, one is created, and its edges are merged or added as needed. Some node types, 
such as IP addresses, should always have matching IDs, and should not search for 
approximate matches. However other node types, such as malware, will very rarely have 
matching IDs even when there is a matching node present. The nodes are equivalent if 
they represent the same real-world entity, even if they do not have the same ID. 
 When searching for an equivalent node, the first step is to build a restricted set of 
potential matches. The purpose of this step is to reduce the number of expensive in-depth 
comparisons that are needed, by replacing most of them with a much quicker comparison 
that eliminates most nodes. To start, only nodes of the same node type should be 
considered (e.g. malware can only possibly match malware, etc.) Next, a "canopy" is 
found, which contains all potentially-matching nodes. The specifics of this depend on the 
comparison techniques for the field and node pairs chosen below, but as an example, 
assume that nodes are matched based on distance, and that the node distance depends on 
the weighted sum of property distances.  If one pair of properties have a large enough 



distance, that alone could make a match impossible, then comparing the remaining fields 
is not needed. 
 For each potentially equivalent node that remains, calculate the distance for each 
of their properties. There are many approaches to finding these distances, and the 
distance metric used may vary based on the data types and the field's meaning. Choosing 
a suitable distance metric depends on the data type and the meaning of the field, but it 
also depends on the types of errors anticipated.  Most of the literature focuses on human 
error, such as typos, misspellings, and inconsistent representation (eg. "Avenue" vs. 
"Ave.")  In our case, we anticipate most of the errors will originate in the text extraction 
process, and handling these types of errors has not been studied extensively. 

1. Token distance - Token distance compares two multi-word strings, breaks them 
into individual words, and compares the counts of words in each string. (This is 
sometimes described as a "bag of words.") This can be expanded to consider word 
frequency and misspellings in the final distance. This is best suited to reasonably 
long sections of text, such as a description field.  

2. Character distance - Character distance, in the simplest case, is the "edit distance" 
or "Levenshtein distance" between two strings - the total number of insert, delete, 
or replace operations needed to transform one string into another.  This can be 
expensive, but some optimizations are possible. There are numerous variations on 
this basic approach, such as giving different weights to the different operations, or 
reducing the cost of adjacent insertions, or varying the cost based on position 
within the string. This can also include varying the cost based on the specific 
substitution performed, to account for misspellings and phonetic similarity. One 
interesting approach is to break the strings down into "q-grams" (overlapping 
substrings of some fixed length) and then finding the token distance using one of 
the techniques from item 1. 

3. Numeric Distance - The techniques for finding distance between numeric fields 
are generally much simpler than the above categories.  In most cases, this is 
simply the difference between the values. However often in the literature, numeric 
fields are simply treated as strings, and one of the above methods are used. 

4. Domain-specific distance - This involves finding a distance based on some 
domain specific rules. For example, if a field contained a log level (Emergency, 
Alert, Critical, Error, Warning, Notice, Info, Debug) then "Debug" may have a 
distance of 1 from "Info", and a distance of 4 from "Error". 

 
 After all property distances have been found, they should be combined to find 
nodes which are equivalent overall. Again, there are many techniques available to 
achieve this. Most or all of these techniques can be extended to add a "reject region" for 
nodes that are too uncertain to be automatically assigned as equivalent, but are instead 
added to a queue for further (generally manual) review. 

1. Probabilistic approaches - There are many approaches that find the probability of 
a node matching based on the probability of the pairs of fields matching. This 
requires either learning or estimating these probabilities for each field. Some 
approaches add an adjustable cost factor, which is useful in cases where false 
positives and false negatives have different impacts on the use of the data. 



2. Supervised and semi-supervised approaches - if labeled training data is available, 
a variety of supervised and semi-supervised machine learning techniques are 
available, using the list of distances and/or the node properties as the input vector. 
Examples include using Support Vector Machines (SVM), clustering approaches, 
and graph partition approaches. Note that some of these are intended to find 
groups of matching entries, instead of matching pairs as in our case. 

3. Unsupervised approaches - These generally rely on clustering to find groups of 
similar nodes. In some cases, there is an additional step to review and label these 
clusters. In some cases, after labeling these clusters, this data is then used to 
"bootstrap" a different approach. 

4. Active-learning approaches - These are similar to the approaches above, but they 
make use of the fact that most cases are either obvious matches or obvious non-
matches.  They find the relatively few ambiguous cases, prompt for human 
labeling, and then adjust their parameters as needed. These approaches seem 
promising, but somewhat less studied than the previous two categories. 

5. Distance-based approaches - These approaches also make use of the fact that most 
non-matching nodes are very distant ("sparse neighborhood”), and matching 
nodes tend to be few and close ("compact set”). In the simplest case, this involves 
finding a distance from a weighted sum of the field distances, and then comparing 
that node distance with some threshold. However, the problem becomes finding 
suitable weights for each field, and finding an appropriate threshold for a match, 
which tends to lead back to the above approaches. 

6. Rule-based approaches - These approaches are based on constructing domain-
specific rules that must be satisfied for a match. These rules are often expressed in 
some domain-specific language. These approaches tend to be highly accurate, but 
they require a large amount of manual effort from a domain expert to create and 
troubleshoot these rules. One interesting approach uses labeled training data to 
create lists of potential rules, which are then reviewed and adjusted by a domain 
expert. 
All of these approaches are adopted from record matching in conventional 

databases, which is a well-studied problem. Unfortunately, there is still no overall best 
approach for that problem, instead, it is highly dependent on the domain, on the data, and 
on what (if any) training data or domain expertise is available. Another consideration is 
that these approaches vary greatly in speed, so a suitable choice will depend on the 
fraction of nodes that must be matched with this process, the number of potential matches 
in the “canopy” for each node, and the overall rate of incoming data vs. available 
resources. 

3.6 Graph Database 
 The Stucco system has had many types of graph databases, including Neo4j, 
Titan, OrientDB, and PostgreSQL graph databases. Initially we researched and evaluated 
different graph storage technologies, settling on a technology stack called TinkerPop, 
which is easy to work with in the short term, but will be scalable in the long term. 
TinkerPop provides a common API, called Blueprints, for many graph databases, 
including Neo4j, a lightweight graph database that is easy to install and run, and Titan, a 
scalable graph database that can use distributed storage to scale out. The input to Neo4j 
and Titan was GraphSON, a superset of JSON. GraphSON can be used with many graph 



databases, including those that use the Blueprints API, offering us flexibility to change 
out the graph database without changing how Stucco ingested data. Unfortunately, the 
freely available version of Neo4j limits the number of vertices that could be stored. The 
amount of data we planned to ingest into Stucco quickly surpassed this limit.  
 Titan provided for greater scaling by using horizontally scalable storage backends 
(e.g. HBase, and Cassandra), which could handle the amount of data in Stucco. Titan 
allowed us to put multiple instances of Cassandra on different machines to handle the 
workload. Titan can also use an Elasticsearch instance to do the data indexing. However, 
we discovered reliability and performance issues with Cassandra and Titan. At that time, 
no new development on the Titan open-source codebase had been done for over four 
months, leading us to believe that we would not see improvements with this technology.  
 So, we moved to OrientDB because it also used the TinkerPop stack. However, an 
obscure document revealed that indexes within OrientDB were not being utilized by its 
implementation of the TinkerPop query API. Luckily, OrientDB did have a Java and SQL 
query API that did exploit the indexes. Unlike Titan, OrientDB had no automated method 
to handle scaling. The current OrientDB strategy for scaling does not reconfigure itself as 
more machines are added. Users need to know ahead of time how much data, how many 
machines, and of what concept type the data will be (vulnerability, software, DNS, etc.). 
However, automated sharding of OrientDB was proposed for the next major version 
release.  
 Due to the lack of automated sharding, we explored database technologies that 
were stable, easily portable, and included thorough documentation. We decided to use 
PostgreSQL, a cross-platform, SQL compliant open-source database that has been around 
for almost twenty years. PostgreSQL includes native full-text search capabilities. The 
PostgreSQL technology has a bulk-loading option, which improved performance of data 
ingestion into Stucco. The flexibility of PostgreSQL allowed us to further improve data-
ingestion performance by implementing alignment logic functions within the PostgreSQL 
database. However, this custom logic added a complexity to the database that made it 
incompatible with sharding technologies, such as Citus. We still have not implemented a 
sharing technique for the PostgreSQL database. 

3.7 Graph Database API 
The graph database API is an interface with specific implementations for each 

supported database. The current PostgreSQL database has an implementation that reads 
from, writes to, and searches the knowledge graph through SQL statements. The interface 
allows data storage technologies to be switched and added to suit users’ needs.  

3.8 Query Service 
The query service provides a RESTful web service to communicate with the graph 

database API so that the user interface and any third-party applications can interface with 
the knowledge graph. The query service will provide functions that facilitate common 
operations (eg. get a node by ID). 

3.8.1 Routes 
• host:port/api/search  

Returns a list of all nodes that match the search query. 



• host:port/api/vertex/vertexType=<vertType>&name=<vertName>&id=<vertID> 
Returns the node with the specified <vertName> or <vertID>. 

• host:port/api/inEdges/vertexType=<vertType>&name=<vertName>&id=<vertID> 
Returns the in-bound edges to the specified node. 

• host:port/api/outEdges/vertexType=<vertType>&name=<vertName>&id=<vertID> 
Returns the out-bound edges to the specified node. 

• host:port/api/count/vertices  

Returns a count of all nodes in the knowledge graph. 
• host:port/api/count/edges  

Returns a count of all edges in the knowledge graph. 

3.9 External Data Fusion 
 Since many enterprises already have 
a data store for their endogenous data (e.g. 
Elasticsearch, Splunk) we decided to modify 
Stucco to utilize the data where it currently 
resides, instead of ingesting it into the 
Stucco knowledge graph. One particular 
deployment site ingests flow data into 
Elasticsearch, so we implemented a version 
of the graph database API for Elasticsearch. 
Then, we modified the query service to 
request data from both the Stucco 
PostgreSQL and Elasticsearch databases, 
then merge the results together. This 
essentially moved a lot of the alignment 
work from ingest time to query time. 

3.10 User Interface 
 The user interface utilizes a RESTful HTTP service to query the necessary graph 
APIs and return the results. The user interface is built using the React framework and the 
state management library, Redux. This screenshot represents the main page of the user 
interface, where users can search for key terms and see examples on the “Help” tab. 
 

 



Below is an example of a view within the user interface. The flow data object shown here 
provides the user with properties of the flow, as well as information on its relationships 
with other data objects. This flow has two processes associated with it, namely VMware 
and perl. 

 
The following set of screenshots illustrates how to use Stucco to learn more about a 
targeted local host called “mary”. 

 



The results of a query for “mary”: 

 
Then, we click on the host data type named “mary” and find properties of the host as well 
as related information. 

 
 
 



We see that an account called “fred” logged onto the host and we want to see more 
information about “fred”, so we click on it. 

 
It turns out that “fred” logged in from a host machine with an IP 79.116.146.15, by 
clicking that host object we might be able to find more information. 

 
There is not much information about the host itself, but let’s explore the IP object. 



 

From here we can see this IP falls within a range of addresses. So, we click the address 
range object. 
 

 
The address range object includes properties like geolocation of the IPs in that range. 
Based on our steps through the Stucco knowledge graph, we now know that the host 
“mary” was accessed by a user on a machine located in Romania. Since “fred” has never 
been to Romania, it appears that his credentials have been compromised. 



4 Deployment 
 We worked with PNNL to deploy a pilot Stucco system to CPPNet for the Cyber 
Intelligence Center (CIC) evaluation. The data involved with CPPNet is about 34k 
records per second, or 3 billion records per day. 

5 Impact 
 The initial impact of Stucco can be seen in the hours, possiblly days, worth of 
manual searching that a cyber analyst would need to perform to determine the impact of 
an incident and how to remedy the situation. One member of the project team was faced 
with an incident alert prior to the development of Stucco. The team member had to 
manually run commands on the machine in question, and search through thousands of 
documents on Google in order to discover contextual information about the incident. This 
undertaking took days to discover what the incident was, how it happened, and how to 
remedy the situation. If our collegue had Stucco, this search would have involved a few 
clicks through the user interface to discover the same information. (The use case shown 
in the User Interface subsection represents the majority of the search that would be 
performed by our team member.) Stucco can save cyber analysts days worth of work, and 
the organization money for this invesitgation. 
 The Stucco project has provided an opportunity for many college students to get 
involved in cyber security research. Internships are a great way to train and educate the 
next generation of cyber researchers and developers. Since the beginning of Stucco, we 
have had 12 student interns contribute to the project. 

We have received many emails from organizations interested in the Stucco 
technology. In particular, a team of University of California Riverside and University of 
Pittsburg researchers were interested in the NLP research for their Hacker-Chatter 
project. An organization called Leidos contacted us saying they are using Stucco and 
found it very helpful in their research to predict cyber attacks. 

The Stucco system is broken up into multiple code repositories, one for each 
component. The codebases are open-source on GitHub, so anyone interested in using or 
modifying the system component can fork their own copy of the code. The following is a 
list of components and the number of forks: 

• Data Collectors and Scheduler - 1 
• Document Service - 3 
• Entity Extractor - 6 
• Relation Extractor - 3 
• STIX Extractors - 1 
• Main Extraction Pipeline - 1 
• Graph Alignment - 2 
• Graph Database Connection API - 2 
• Query Service - 1 
• User Interface - 1 
• Relation Bootstrap Research - 2 
• Development Environment Setup - 2 
• Demo - 1 
• Auto-labeled Corpus (used by Entity Extractor)- 1 
• Data Source Listing – 8 



 
Another metric to show public interest is number of downloads from the Vagrant 

Cloud site (https://app.vagrantup.com/stucco), which is where we host pre-built Stucco 
instances as virtual machines. We have three versions of Stucco, each with multiple 
downloads: 

• Development environment with an empty knowledge graph – 58 
• Demo instance with data from testbed – 438 
• Production instance that actively collects new data – 95 

6 Outreach 
• Conference Paper Submitted: R.A. Bridges, K.M.T. Huffer, C.L.Jones, M.D. 

Iannacone, J.R. Goodall, "Cybersecurity Automated Information Extraction 
Techniques: Drawbacks of Current Methods, and Enhanced Extractors", submitted 
to IEEE ICMLA 2017 on December 18-21, 2017. 

• Paper: C.R. Harshaw, R.A. Bridges, M.D. Iannacone, J.R. Goodall, "GraphPrints: 
Towards a Graph Analytic Method for Network Anomaly Detection" to CISRC 
2016, Jan 28, 2016. 

• Poster: C.R. Harshaw, R.A. Bridges, M.D. Iannacone, J.R. Goodall, "Graph-Prints: 
A Contextual, Model-Free, Multi-Scale Network Analysis Framework for 
Characterizing Network Flow Data" FloCon, 2016. 

• Paper: C.L. Jones, R.A. Bridges, K.M.T. Huffer, J.R. Goodall "Towards a relation 
extraction framework for cyber-security objects," Cyber and Information Security 
Research Conference, 2015. Runner-up Best Short Paper Award.  

• Corresponding conference presentation of above publication  

• Paper: M.D. Iannacone, S. Bohn, G. Nakamura, J. Gerth, K.M.T. Huffer, R.A. 
Bridges, E.M. Ferragut, J.R. Goodall "Developing an Ontology for Cyber Security 
Knowledge Graphs," Cyber and Information Security Research Conference, 2015. 

• Presentation: J. Gerth and J. R. Goodall. "Stucco - Situation and Threat 
Understanding by Correlating Contextual Observations". FloCon, 2014. 

• Presentation: R.A.Bridges "New Techniques for Entity Extraction of Cyber Security 
Concepts". CISML Seminar, March 28, 2014.  

• Presentation: R.A.Bridges "Stucco - Situation and Threat Understanding by 
Correlating Contextual Observations". ORNL short presentation to Mitre visitors, 
May 06, 2014.  

• Paper: R.A. Bridges, C. Jones, M. Iannacone, K.M. Testa, J.R. Goodall, "Automatic 
Labeling for Entity Extraction in Cyber Security", ASE Open Scientific Digital 
Library, May 28, 2014 Stanford, CA. 

• Correpsonding conference presentation of this publication: R.A.Bridges "New 
Techniques for Entity Extraction of Cyber Security Concepts". ASE Conference, 
May 28, 2014 Stanford, CA. 



• Poster: N. McNeil, R. A. Bridges, and J. R. Goodall. "Bootstrapping for Text 
Extraction in Cyber Security". Joint Math Meeting, 2014.  

• Poster: C. L. Jones, R. A. Bridges, M. D. Iannacone, and J. R. Goodall. "Text 
Analysis for Timely Discovery of Cyber Security Concepts". Joint Math Meeting, 
2014.  

• Paper: R. A. Bridges, N. McNeil, M. D. Iannacone, B. Czejdo, N. Perez, and J. R. 
Goodall. "PACE: Pattern Accurate Computationally Efficient Bootstrapping for 
Timely Discovery of Cyber Security Concepts". International Conference on 
Machine Learning and Applications (ICMLA) Special Session on Machine Learning 
Challenges in Cyber Security Applications, 2013.  

• Corresponding conference presentation of above publication 

• Poster: A. Athalye, J. Goodall, M. Iannacone. “Morph: A Framework and DSL for 
Transforming Structured Data”. ORNL Summer Poster Session 2013. 

• Poster: C. Jones, R. Bridges, M. Iannacone, J. Goodall. “Text Analysis for Timely 
Discovery of Cyber Security Concepts”. ORNL Summer Poster Session 2013. 

• Poster: N. McNeil, R. Bridges, J. Goodall. “Bootstrapping for Text Extraction in 
Cyber Security”. ORNL Summer Poster Session 2013. 

7 Lessons Learned 
 The most important lesson we learned had to do with complexity. There were too 
many different components associated with the Stucco system, and each component had 
at least one code repository. On top of that, many components depended on multiple 
libraries and utilities, which only added to the complexity of building the Stucco system. 
The intricacies of the system components also made it difficult to thoroughly test each 
piece separately and as a whole system. 
 Another issue we encountered was the performance, stability, and usability of a 
data storage technology. More details about this topic are discussed in the “Graph 
Database” subsection. We still have not solved this problem because our use case 
required a storage technology to handle many reads and writes as single transactions, and 
not as batch jobs. We also needed the storage system to be easily distributed for 
scalability, preferably done ad hoc as the amount of data increases. 
 The data model, STIX, was very difficult to work with. The focus of the STIX 
model did not align nicely to the data types we were ingesting. More specifically, Stucco 
focused on adding context to an incident or event, so we gathered data on IPs, blacklists, 
software, software vulnerabilities, etc. STIX seemed to center around the actor, or “bad 
guy”, and how the incident or campaign occurred, so our data mainly covered 
Observables, and loosely covered Exploit Targets, TTPs, Indicators, and Course Of 
Action. We tried to use existing STIX libraries to parse and ingest structured data; 
however, the libraries were incredibly slow and did not implement the XML format 
properly. 
 Because of the issues with the data storage system and the data format, alignment 
became a slow and complex process. 



 The NLP research into extraction of cyber information from unstructured text was 
promising, but a lack of labeled data made training algorithms difficult. By using semi-
structured data such as NVD, we were able to train models using an unstructured 
description field because the structured fields provided labels for the entities. We trained 
models on the labeled description fields, but the writing style of NVD was very different 
from cyber security blogs, which were the targeted documents. It turned out that using a 
two-step process to label entities was the best approach. In this process, the first step was 
to use a gazetteer to do a lookup of known entities, and the second step used a machine 
learning (ML) model, if the entity was not found in the gazetteer. Our efforts moved the 
NLP in cyber research forward, but it was not at the point where it was useful in a real-
world system just yet. We needed more training data to cover more of the STIX concepts. 
We believed the best approach to using NLP in a real-world system involved an offline 
training, or curation step so that performance at data ingest would not slow to a crawl due 
to machine learning processing. 

8 Stucco 2.0 Approach 
 Based on our experiences with this work and the lessons learned, we have come 
up with alternative approaches to this problem. We are now more familiar with a data 
storage technology called Elasticsearch. We believe many of our data storage issues 
could be solved with this technology. Elasticsearch has the capabilities to handle batch 
writes, fast reads, and provides automatic sharding for scalability. 
 The issue of system complexity could be solved by developing a microservice 
based approach. This would involve many stand-alone projects that handle only one type 
of data, and an analytic fusion layer to pull all the data together for the user. This would 
improve the build process, reduce testing complexity, reduce the amount of alignment 
needed, and improve storage performance by limiting the amount of data. 

9 Accomplishments 
 There have been some significant accomplishments during the course of the 
Stucco project. The current Stucco system can automatically align STIX-formatted 
documents with no configuration necessary. 
 We were able to improve data ingestion performance for the pilot Stucco instance 
in CPPNet. We optimized the process to transform raw structured data into a more easily 
aligned format and moved some of the alignment logic into the PostgreSQL data storage 
system. These optimizations increased performance from 3.55 seconds to 1.09 
milliseconds per Geo-IP record and 20 seconds to 48 milliseconds for each Argus record. 
This is over 3000x and 400x improvement for Geo-IP and Argus, respectively. 
 We pushed NLP in cyber research forward, but it the implementation is not quite 
ready for production systems. 
 The Stucco system is a forerunner in the area of threat intelligence platforms. One 
of the earliest open-source projects was CIF (http://csirtgadgets.org/), which was 
developed by REN-ISAC and available in 2012. The data provided is not in STIX format 
and focuses on IPs, domains, and URLs related to malicious activity. Information Sharing 
and Analysis Centers (ISACs) began to appear around 2013, but they were exclusive to 
members within a particular industry and usually informal collections of data. Soltra 
Edge (https://www.soltra.com/en/) began around 2014 as a joint venture between FS-



ISAC and Depository Trust and Clearing Corporation (DTCC). It was bought by NC4 in 
2016 and is now a commercial system that uses STIX and TAXII. ThreatStream 
(https://www.anomali.com/platform/threatstream) is a cybersecurity startup company 
backed by Cloudera executives and a significant amount of venture capital. The company 
started around 2014. It is a commercial product that can take STIX/TAXII data as input. 
Another commercial product is Cisco’s Talos (https://www.talosintelligence.com/), 
which collects threat intelligence from its products at organizations, essentially 
crowdsourcing data collection. The intelligence it gathers is then fed into other Cisco 
products such as Snort, Sourcefire, and Threat Grid. There have been many organizations 
trying to develop systems that gather and/or synthesize threat intelligence. Stucco has 
significant overlap with these new threat intelligence platforms, but Stucco started earlier, 
is open-source, and is more comprehensive in scope. 
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